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We study the q-state clock models on heptagonal lattices assigned on a negatively curved surface. We show
that the system exhibits three classes of equilibrium phases; in between ordered and disordered phases, an
intermediate phase characterized by a diverging susceptibility with no magnetic order is observed at every q
�2. The persistence of the third phase for all q is in contrast with the disappearance of the counterpart phase
in a planar system for small q, which indicates the significance of nonvanishing surface-volume ratio that is
peculiar in the heptagonal lattice. Analytic arguments based on Ginzburg-Landau theory and generalized
Cayley trees make clear that the two-stage transition in the present system is attributed to an energy gap of
spin-wave excitations and strong boundary-spin contributions. We further demonstrate that boundary effects
break the mean-field character in the bulk region, which establishes the consistency with results of clock
models on boundary-free hyperbolic lattices.
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I. INTRODUCTION

The role of geometry has continued drawing attention in
statistical physics. A curved surface, for example, has been a
useful test ground to study ergodicity �1�, and curved nano-
scale carbon structures have been expected to possess inter-
esting elastic and magnetic properties �2�. Recently, rapid
development of soft material sciences also requires a precise
understanding of physics on a curved surface in terms of
geometric interactions �3�. One immediate question from the
statistical-physical viewpoint is how phase transitions occur
on such a curved surface since they in general depend on
geometrical factors. In particular, a negative Gaussian curva-
ture yielding a saddlelike hyperbolic surface has been more
commonly studied in critical phenomena than a positive one
since a positive curvature tends to make a closed surface so
that it is hard to extend the system size while keeping the
magnitude of the curvature constant. In a negatively curved
surface, the length scale grows only logarithmically with the
surface area, and thus one could expect a mean-field-like
critical behavior in many systems. Whereas this expectation
was proven true for the bulk of the Ising spin system �4,5�,
the XY spin model has no local order at finite temperatures
�6�. This lack of order in the XY model is attributed to the
gapless spin-wave excitations that can arise from the bound-
ary at any finite temperature T. This argument is based on the
fact that a negatively curved surface contains a huge amount
of boundary points: that is, for a negatively curved surface,
the ratio of surface area to perimeter �which is the two-
dimensional example of the so-called surface-volume ratio in
general dimension� remain nonvanishing even in the large-
system limit. Since it was pointed out that a system may
have a novel behavior due to the presence of a nonvanishing

boundary �7�, there have been ongoing studies to clarify this
issue �4,6,8–11�. While the boundary effects can be some-
times excluded, for example, by using a periodic boundary
condition �12� or by mathematical abstractions �5,13–15�, it
is often crucial to understand how a boundary affects the
physical properties since it may give the most important con-
tribution to an observed behavior as will be explained in this
work.

The complete difference between the Ising and the XY
models with respect to the presence or absence of the ordered
phase motivates us to study the q-state clock model on a
negatively curved surface. The q-state clock model is equiva-
lent to the Ising model for q=2 and approaches to the XY
model for q→�. Thereby one can obtain a better under-
standing on how the phase structure changes in between with
varying q. In this paper, we present the following findings:
first, the critical temperature Tc is indeed proportional to the
energy gap to excite the spin fluctuations. Second, we report
an intermediate phase with a diverging susceptibility be-
tween the ordered and disordered phases. While it corre-
sponds to the quasiliquid phase in the planar case, an inter-
esting difference is that this intermediate region
characterized by the vanishing order parameter and diverging
susceptibility is observable at every q�2 on the curved
structure. This point will be further discussed by studying the
Cayley tree analytically.

This work is organized as follows: in Sec. II, we explain
the construction of our lattice for describing a negatively
curved surface, and introduce the q-state clock model on top
of it. The results will be presented and discussed in Sec. III.
We then summarize this work in Sec. IV.

II. CLOCK MODEL IN HYPERBOLIC LATTICE

A Schläfli symbol �k ,w� means a tessellation that w
regular k-sided polygons meet at each vertex. Satisfying*Corresponding author; beomjun@skku.edu
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�k−2��w−2��4, every pair of �k ,w� results in a negatively
curved surface, yielding a hyperbolic tessellation �16�. Each
hyperbolic tessellation gives a resulting lattice structure,
which will be generally called a hyperbolic lattice. In this
work, we construct one type of hyperbolic lattices, i.e., a
heptagonal lattice denoted as �k ,w�= �7,3�, in a concentric
way as depicted in Fig. 1. We start with the zeroth layer, a
point in the middle of the Poincaré disk �17�, and surround it
by three heptagons. Then the newly added 15 points consti-
tute the first layer. Likewise, attaching 12 heptagons all the
way around the first layer adds 45 more points, which make
the second layer, and so on. A heptagonal lattice of a level l
means that it is made up to the lth layer, and its system size
is then given by N�l�=1+ 15

�5
� j=1

l �� 3+�5
2 � j − � 3−�5

2 � j�. As N�l� in-
creases exponentially with l, the surface-volume ratio does
not vanish even in the large-size limit.

An important consequence of the nonvanishing surface-
volume ratio is an enhancement of boundary effects that ex-
ceeds the bulk-spin contributions. Sometimes only the bulk
properties are studied by restricting ourselves to a distance
less than xl from the zeroth layer with a constant 0�x�1.
However, one should remember that the system would not be
properly described by the bulk part since its fraction eventu-
ally vanishes: suppose that N�l�	ezl for some curvature-
dependent constant z. The bulk fraction is then exzl /ezl

=e−�1−x�zl, which exponentially decreases as l grows. This is
why the boundary-spin contribution plays a dominant role in
determining the physical properties of the whole system.

By the q-state clock model, we mean a spin system de-
scribed by the following Hamiltonian:

H = − J�

ij�

si · s j − �
i

h · si = − J�

ij�

cos��i − � j� − �
i

h cos �i,

�1�

where each spin si can have one of q possible angles, �i
=2�ni /q with ni=0,1 , . . . ,q−1, and h is a magnetic field
along the direction for �=0 with a magnitude h. The sum-
mation is over the nearest neighbors, and the coupling con-
stant J�0 is the strength of the ferromagnetic interaction. As
mentioned above, q=2 and q=� correspond to the Ising and
XY models, respectively. In addition, the case of q=3 is
equivalent to the three-state Potts model �18�. The case of

q=4 has the same universality class as the Ising system since
the partition function of the four-state clock model at tem-
perature T is formally isomorphic to that of two uncoupled
Ising systems at T /2 �19�.

In the planar case, the q-state clock model for h=0 gen-
erally has three phases in the q-T plane �20�. Two among the
three are ordered and disordered phases as in the Ising
model. From the existence of the Kosterlitz-Thouless �KT�
phase in the XY limit �21�, one can argue that the third qua-
siliquid phase emerges for q�4 in the intermediate tempera-
ture range �22�. The low transition point where the ordered
phase vanishes is roughly described by T1�1 /q2, as ex-
plained in the Villain approximation �22,23�. On the other
hand, the high transition point, where disordered phase be-
gins, remains almost constant around T2=TKT�0.89J /kB for
q�8, where kB is the Boltzmann constant �20�.

With a constant negative curvature, as shown in the next
section, some of these behaviors still look qualitatively simi-
lar. Specifically, the lower transition point is roughly propor-
tional to 1 /q2 whereas the higher one does not change much
as q increases. However, there also exist clear differences in
that the intermediate phase between these two temperatures
is created by a very different mechanism discussed later, and
is present at every q�2.

III. RESULTS

A. Ginzburg-Landau theory for homogeneous lattice
without boundary

Phase transitions on a curved surface can be very different
whether a boundary of the system is considered or not. As
our numerical experiments include both of the curvature and
boundary effects, we will first consider only the curvature
effects in this part, in order to highlight the boundary effects
more clearly.

Suppose the q-state clock model is in a continuum limit.
Phenomenologically one may write a dimensionless free en-
ergy F of this system in the ordered phase �24� as

F = d������2 − ���2 +
1

2
���4 +

v
q

��q + ��q − 2���q�

−
1

2
�h̃�� + h̃���� , �2�

where � is a position vector �r� rescaled by a specific length
scale, 	, so that ���= �r� /	. In Eq. �2�, ��� , t�
= ���� , t��exp�i
�� , t�� is a complex order parameter, h̃�� , t�
is a dimensionless magnetic field represented as a complex
number, and v is a positive constant. Functional differentia-
tion of Eq. �2� with respect to �� yields

�F

���
= − �2� − ��1 − ���2� +

v���q − ���q�
��

− h̃ . �3�

Assuming the free-energy minimum, �F /���=0, we differ-

entiate Eq. �3� with respect to h̃ to find an equation for the

two-point correlation function, G�� ,���=����� /�h̃����:

FIG. 1. Schematic view of a heptagonal lattice with a level
l=3, projected on the Poincaré disk.
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�− �2 − 1 + 2���2 −
qv
2

���q−2�G��,��� = ���,��� . �4�

For a translationally invariant system, we may set ��=0
without loss of generality. Let us take a sufficiently small v
so that this system has ground states with ����0 �25�. Then
one finds ����1 for small v from which it follows

��2 − 1�G��� = − ���� , �5�

where �����.
We now impose negative Gaussian curvature to the under-

lying surface of the model. On a hyperbolic surface, the La-
placian operator is replaced by  written as �26�

 =
1

sinh �

�

��
�sinh �

�

��
� +

1

sinh2 �

�2

��2 �
�2

��2 +
�

��
,

where the approximation can be taken due to the exponential
increase of sinh �. Then Eq. �5� is reduced to

� �2

��2 +
�

��
− 1�G��� = − ���� . �6�

This equation is solved yielding G���	e−��1+�5�/2. Note that
the correlation function basically behaves like a one-
dimensional case as G�r�	e−r/	 �27�, where 	 serves as the
correlation length of the system. Such an exponential decay
in G��� on the hyperbolic surface apparently suggests the
absence of order-disorder phase transition in the current sys-
tem. This is, however, not the case. A noteworthy point is
that the number of spins Ns�r� within a distance r also in-
creases exponentially in a hyperbolic surface, which results
in divergence of the magnetic susceptibility defined by

� = �NkBT�−1�
i,j

G�i, j� , �7�

where the summation is over every possible pair �i , j� of
spins. Even if G�r� shows an exponential decay, susceptibil-
ity � is able to diverge at finite T by satisfying Ns�r�G�r�
�1, from which the critical temperature Tc can be located
�28�.

In addition to the curvature effects mentioned above, we
should take note of the effects of strong boundary-spin con-
tributions that are inherent to the present system. Notice that
in passing from Eq. �2� to Eq. �3�, we have discarded a
surface term. As mentioned already, however, the boundary
effect cannot be neglected in any physically realizable sys-
tem with a constant negative curvature. Hence, the present
system involving the boundary effects will exhibit distinct
properties from the mean-field character observed in Ref.
�14� wherein the boundary effects are artificially excluded.
We also note that our discussion in the previous paragraph
supports the validity of the mean-field description in the
boundary-free system since the correlation function decays
so fast at Tc �27�.

B. Estimation of the lower transition temperature Tc

In Fig. 2, we propose a phase diagram of the clock model
on the physically realizable hyperbolic lattice introduced in

Sec. II. In this diagram, we define Tc as the temperature
above which the magnetic order vanishes. Apart from the
ordered and disordered phases, we can identify the third in-
termediate one, which is also disordered but exhibits a di-
verging susceptibility. Therefore, we specify one more tran-
sition temperature denoted as Ts, above which the
susceptibility divergence disappears and the normal disor-
dered phase begins.

In order to obtain the phase diagram, we employ the par-
allel tempering method �29� and measure the magnetic order
parameter


�m�� =�� 1

N
�

j

ei�j�� ,

where 
¯ � represents the thermal average. From Binder’s
fourth-order cumulant �30�,

UN�T� = 1 −

�m�4�

3
�m�2�2

for different l, we can locate a unique crossing point for each
q �Figs. 3�a�–3�c��. This determines the lower transition tem-
perature Tc as a function of q.

Figure 3�d� shows the dependence of Tc on q. Tc is found
to rapidly decrease to zero as q grows larger. A striking ob-
servation is that Tc is determined by the typical energy scale
E to rotate a spin in the fully ordered ground state. E is
roughly given by

E � 1 − cos�2�

q
� = sin2��

q
� , �8�

in units of J /kB �see Eq. �1��, being proportional to Tc for
each q as clearly shown in Fig. 3�d�. In addition, Eq. �8� can
be approximated by Tc�1 /q2 for large q, which is analogous
to the planar case. More interesting is the fact that the rela-
tion of Tc�E captures the exact relation, Tc�q=4�= 1

2Tc�q
=2�, mentioned in the previous section. These results are
consistent with the interpretation that the spin-wave excita-
tion breaks every magnetic order in the XY model �6�; in
fact, Eq. �8� leads to E=0 in the limit of q→�, and thus
Tc=0.

0

0.5

1

1.5

2 4 8 16 ∞

T

q

Ordered Susceptibility = ∞

Normal
Disordered

…

Tc
Ts

FIG. 2. �Color online� Phase diagram of the q-state clock model
on the heptagonal lattice as shown in Fig. 1. We define two transi-
tion temperatures Tc and Ts so that there exist the ordered phase
below Tc and the normal disordered phase above Ts. The interme-
diated phase is characterized by a diverging susceptibility with no
magnetic order. The dotted lines mean extrapolated behaviors of the
transition temperatures to the XY-model limit �q=��.
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It is worthy to mention the significant contribution of
boundary spins to the determination of Tc; this is caused by
the fact that the actual magnitude of E depends on the
number of neighbors. Since boundary spins have fewer
neighbors, the proportionality constant in Eq. �8� takes a
smaller value than those of bulk spins so that their orienta-
tion will be strongly disturbed by thermal fluctuations. We
also comment that the spin-wave excitation is observable in
the hyperbolic lattice without boundary since it is the basic
excitation mode. In the latter system, however, the excitation
is not sufficient to destroy the ordered phase but arises as a
separate peak in specific heat at q�4 �14�.

C. Two distinct scaling relations around Tc and Ts

We next evaluate critical exponents of the transition by
employing the finite-size scaling analysis. As pointed out in
Ref. �7�, distribution functions of �m� for the heptagonal lat-
tice deviate from the Gaussian distributions �Fig. 4�. Since
the idea of the fourth-order cumulant assumes a Gaussian
peak shape �30�, a direct scaling of the cumulant will give a
different value from the actual correlation-length exponent
estimated from the order parameter �4�. In order to find an
appropriate estimate, therefore, we perform at each q the
scaling analysis for 
�m�� based on the scaling hypothesis:


�m�� � N−�/�̄f��T − Tc�N1/�̄� . �9�

In the present case, we choose N instead of l as a proper
scaling variable, as N gives much better scaling collapse at
Tc than l. Although the finite-size scaling of the Binder’s
cumulant with �̄ fails due to the non-Gaussian nature of the
magnetization distribution, Tc’s estimated from the crossing
of UN and from Eq. �9� are almost identical. Figure 5 shows
the resulting scaling plots and estimated critical exponents as
functions of q. While �̄ appears to be relatively constant at
q�6, � tends to decrease to zero, suggesting that every
q-state clock model belongs to a different universality class,
apart from the exact equivalence between q=2 and 4.

Measuring the magnetic susceptibility �=N�
�m�2�
− 
�m��2� /kBT usually gives another way to estimate �̄ with a
similar scaling hypothesis,

� � N−�/�̄f��T − Tc�N1/�̄� . �10�

This yields consistent results with the above ones for q�4,
and confirms the results in Ref. �4� for q=2 and 4. However,
we find Eq. �10� inapplicable at q�4 to obtain critical indi-
ces since the susceptibility begins to diverge at a temperature
Ts, much higher than Tc. In contrast, the length scale l suc-
cessfully works as a scaling variable �Fig. 6�. Henceforth, we
should employ the following alternative scaling hypothesis
around Ts,

� � l−��/�g��T − Ts�l1/�� , �11�

which locates the phase-separation point Ts as depicted in
Fig. 2. In a usual d-dimensional lattice, there exists a trivial
relationship between exponents found in Eqs. �10� and �11�,
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FIG. 3. �Color online� Bind-
er’s fourth-order cumulant for the
q-state clock model on heptagonal
lattices with �a� q=3, �b� q=6,
and �c� q=12. �d� Transition tem-
peratures between the ordered and
disordered phases, Tc, compared
to sin2�� /q�.
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FIG. 4. Distributions of the magnetic order parameter for Ising spin systems �q=2� �a� in a heptagonal lattice and �b� in a plane. To
compare these two cases, we make both systems have sizes of N	O�103�, and set T�0.8Tc to observe low-temperature regions. A narrow
Gaussian peak is clearly shown in the planar case while a longer tail is observed at low �m� in the heptagonal case �7�.
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derived from N	 ld. In absence of such a relation between N
and l, it is rather nontrivial to observe these different scalings
in a single system at different temperatures. A similar change
in the scaling variable across two transitions is also found in
percolation phenomena on hyperbolic lattices �10�.

It is noticeable that a diverging susceptibility at finite Ts
appears to be the counterpart of the susceptibility divergence
at TKT in the planar XY model. More interestingly, the higher
transition temperature Ts, separate from Tc, exists for all q
for the heptagonal lattice, whereas the quasiliquid phase in
the planar case does not appear with q�4. To look into its
origin, we below examine the clock model on the Cayley
tree.

D. Comparison with Cayley tree

The Cayley tree is a special type of hyperbolic lattices
containing no loops, which often allows exact calculations as
a useful guidance. In order to understand the existence of the
intermediate phase, we extend the results for the Ising model
�q=2� on the Cayley tree, presented in Refs. �31,32�, to gen-
eral q.

Let us consider a branching number of B=2, i.e., a binary
tree with n generations, where a root node is denoted as the
zeroth generation. The total number of nodes are Nn=2n+1

−1. Let Zn
��� denote the partition function of this branch, re-

stricted that the root node has a phase variable as �. The
complete partition function would be then Zn=��Zn

���, where

the summation �� runs over �=0, 2�
q , 4�

q , . . . , 2��q−1�
q . A tree

with �n+1� generations can be generated by attaching two
trees with n generations to a single node, which has a certain
angle �. Since two n-generation trees are totally independent,
one can write the following recursion relation,

Zn+1
��� = e�̄h cos ���

��

Zn
����e�̄J cos��−����2

, �12�

where �̄��kBT�−1 and the magnetic field h is assumed to be
in parallel with �=0.

By differentiating Eq. �12� and taking the limit as h→0
�see Appendix A�, we find the magnetization of the
n-generation tree with broken symmetry as follows:


m�n =
1

Nn

1

Zn
�0�

�Zn
�0�

���̄h�
=

1

Nn
�
j=0

n

�2R� j =
1

2n+1 − 1

�2R�n+1 − 1

2R − 1
,

�13�

where R����e�̄J cos � cos �� / ���e�̄J cos ��. Following the ar-
gument in Ref. �33�, we remark that the correlation between
a pair of spins, separated by the distance r, is given as Rr.
Since R�1 in general, the magnetization 
m�n goes to zero
as n→�. One may also consider the free-energy cost of
forming a spin cluster on a subbranch of this tree. Since a
single bond divides the whole tree into two regions, the en-
ergy cost at the interface is �E=2�1−cos�2� /q��, basically
constant regardless of the cluster size. At any finite tempera-
tures, the entropy gain �S, by forming a spin cluster, will
thus dominate the free-energy change, readily breaking the
magnetic order �see Ref. �34� for a typical spin configura-
tion�. Yet one should note that this large-system limit can be
quite subtle �35�.

The second-order derivative of Eq. �12� leads to �see Ap-
pendix C�
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FIG. 5. �Color online� Finite-
size scaling using Eq. �9� for �a�
q=4 and �b� q=16. Here the pa-
rameters are chosen as � / �̄
=0.167, 1 / �̄=0.285, and Tc=0.63
for q=4, and � / �̄=0.0075, 1 / �̄
=0.275, and Tc=0.05 for q=16.
By this way, we estimate behav-
iors of critical indices �c� � and
�d� �̄ as q varies.
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FIG. 6. �Color online� Suscep-
tibility scaling with l in case of
q=6. �a� The crossing point at
Ts=0.6 with �� /�=2, and �b�
scaling collapse with 1 /�=1.5.
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�n =
�̄

Nn
� 1

Zn

�2Zn

���̄h�2
− � 1

Zn

�Zn

���̄h�
�2�

�
�̄

Nnq
�

�

1

Zn
���

�2Zn
���

���̄h�2

=
�̄S

�2n+1 − 1�q��R + 1�22n+1

1 − 2R2 +
4R4

2R2 − 1��
j=0

n−1

�2R� j�2

+
2R + 1

2R2 − 1�
j=0

n+1

�2R� j� , �14�

where S���cos2 �. This formula recovers the Ising case

with q=2, where �n diverges at �̄sJ�J /kBTs=ln�1+�2�
�0.8814 �32�. Also in general, Eq. �14� diverges at
R=1 /�2. If q→�, we may rewrite the summations in

R as integrals so that R= ��0
2�e�̄J cos � cos �� / ��0

2�e�̄J cos ��
= I1��̄J� / I0��̄J�, where In�x� is the modified Bessel function

of the first kind. A numerical solution then gives �̄sJ
�2.0582. Since �n�R� is basically the same at any q and R is
always a monotonic function of temperature, the divergence
should be also qualitatively the same as in q=2. That is,
susceptibility diverges as �n /n	a0+a1�T−Ts�n with some
constants a0 and a1 �32�.

The susceptibility divergence can be explained by the
presence of boundaries �33�. From the viewpoint of bound-
ary spins, which dominate the overall property, the effective
number of generations appears as n��2n since it is the
maximum possible distance in this tree. Therefore, the effec-

tive branching number for a boundary spin amounts to B̃

��2 so that B̃n�=N	2n �see Ref. �7� for a general discus-
sion�. According to Eq. �7�, the contribution of each bound-

ary spin to susceptibility is roughly C=� j
n�B̃jRj. Since the

number of boundary spins is proportional to the system size

N, we find the lower bound of susceptibility that �n��̄C,
and expectedly this will make the most dominant term. At

R=1 /�2, we have B̃R�1, which means that C��2nO�1�.
Note that the summation is limited by the number of genera-
tions, n. In other words, the susceptibility diverges with �n
�n at R=1 /�2.

Recalling differences between with and without loops in
percolation phenomena �10�, we may expect only a qualita-
tive understanding for the heptagonal lattice from studying
the Cayley tree rather than a quantitative agreement. Al-
though the presence of closed loops will presumably alter the
results described above, the essential parts of these argu-
ments could be conveyed to our heptagonal lattice. That is,
the susceptibility divergence at Ts should be attributed to the
exponential growth of N�l�. This is markedly different from
the case in regular lattices, where the susceptibility diver-
gence is due to divergence in the correlation length. In par-
ticular, the correlations among boundary spins play the most
important role at this point. Nonetheless, the correlation
function does not have to decay algebraically yet, which is a
possible reason that Binder’s cumulant does not detect Ts.

One cannot observe the algebraic decay until reaching Tc�
�Ts�. Around that point, the hyperbolic lattice begins to
manifest itself more as a surface. In contrary to the tree case
above, for example, the energy cost at a domain wall in-
creases roughly logarithmically with the cluster size �10�,
opening the possibility for Tc to be finite. As a consequence,
we observe these three phases in general: an ordered phase, a
disordered phase but having a diverging susceptibility, and a
normal disordered phase with a finite susceptibility.

IV. SUMMARY

We investigated the q-state clock model on the heptagonal
lattice, and found that the spin-wave excitation is relevant in
the order-disorder transition in this system. In the planar
q-state clock model, one could expect one additional quasil-
iquid phase, and thus two phase transitions for q�4. The
lower transition defines the line between true- and quasi-
long-range order, and the higher one defines where the quasi-
long-range order vanishes. If we only introduce the curvature
effect but without the finite surface-volume ratio, the quasi-
long-range order becomes a genuine order and the higher
transition is of the mean-field type since fluctuation decays
exponentially �see Sec III A�. However, the presence of a
boundary cannot be neglected, which breaks the mean-field
picture, and the spin-wave excitation appears to be crucial in
establishing the ordered phase. In the limit of q→�, the
excitation becomes gapless so that the transition temperature
approaches zero. In addition, the susceptibility begins to di-
verge at a higher temperature, indicating a similar phenom-
enon to the KT transition with a diverging susceptibility. By
analyzing the clock model on the Cayley tree, we suggest
that the hyperbolic nature of the underlying lattice structure
makes the third phase observable for every q�2.
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APPENDIX A: MAGNETIZATION IN CAYLEY TREE

If we take the limit of h→0, Eq. �12� leads to

Zn+1
��� = Zn

���2��
��

e�̄J cos��−����2
, �A1�

since Zn
���=Zn

��=0� by symmetry. It is straightforward to see
that

Zn
��� = ��

��

e�̄J cos ���2Nn, �A2�

since
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�
��

e�̄J cos��−��� = �
��

e�̄J cos ��. �A3�

Note that Eq. �A2� is an analytic function at any T �36�. As to
derivatives, one finds the following equations by differenti-

ating Eq. �12� with respect to �̄h:

�Zn+1
���

���̄h�
= Zn+1

��� cos � + 2e�̄h cos �I0I1, �A4�

where

Ik��� � �
��

�kZn
����

���̄h�k
e�̄J cos��−���, �k = 0,1,2� .

We then take the zero-field limit, h→0. By mathematical
induction �see Appendix B�, one can show

�Zn
���

���̄h�
=

�Zn
��=0�

���̄h�
cos � . �A5�

Henceforth, by Eqs. �A1� and �A5�, we can rewrite Eq. �A4�
for a restricted ensemble with �=0 as follows,

1

Zn+1
�0�

�Zn+1
�0�

���̄h�
= 1 + 2

�
�

e�̄J cos � cos �

�
�

e�̄J cos �

1

Zn
�0�

�Zn
�0�

���̄h�
, �A6�

which directly leads to Eq. �13�.

APPENDIX B: MATHEMATICAL INDUCTION

Let us assume that Eq. �A5� holds true, as it does for n
=0,

� �Z0
���

���̄h�
�

h=0

= e�̄h cos � cos ��h=0 = cos � .

Then for general n, this assumption yields the following re-
lation:

�Zn+1
���

���̄h�
= Zn+1

��� cos � + 2Zn
����Zn

��=0�

���̄h� ���� e�̄J cos��−����
���

��

e�̄J cos��−��� cos ��� . �B1�

Here we note the following identity:

�
��

e�̄J cos��−��� cos ��

= �
��

e�̄J cos �� cos�� − ���

= cos ��
��

e�̄J cos �� cos �� + sin ��
��

e�̄J cos �� sin ��

= cos ��
��

e�̄J cos �� cos ��, �B2�

where ����−�� and the last equality is due to the fact that
sin �� is an odd function. Therefore, we substitute Eqs. �A3�
and �B2� into Eq. �B1� and then obtain

�Zn+1
���

���̄h�
= �Zn+1

��=0� + 2Zn
��=0��Zn

��=0�

���̄h� ���� e�̄J cos ���
���

��

e�̄J cos �� cos ����cos � =
�Zn+1

��=0�

���̄h�
cos � ,

which confirms Eq. �A5� for any n�0.

APPENDIX C: SUSCEPTIBILITY IN CAYLEY TREE

For describing susceptibility, we again differentiate Eq.
�A4� to get

�2Zn+1
���

���̄h�2
=

�Zn+1
���

���̄h�
cos � + 2e�̄h cos ��cos �I0I1 + I1

2 + I0I2� .

�C1�

In the zero-field limit, we have the following:

1

Zn+1
���

�2Zn+1
���

���̄h�2

= �1 + 4R�cos2 �
1

Zn
�0�

�Zn
�0�

���̄h�
+ 2R2 cos2 �� 1

Zn
�0�

�Zn
�0�

���̄h�
�2

+ 2

�
��

1

Zn
����

�2Zn
����

���̄h�2
e�̄J cos��−���

�
��

e�̄J cos ��
.

To simplify the last term, we sum up both sides over � and
find

�
�

1

Zn+1
���

�2Zn+1
���

���̄h�2

= S��1 + 4R�
1

Zn
�0�

�Zn
�0�

���̄h�
+ 2R2� 1

Zn
�0�

�Zn
�0�

���̄h�
�2�

+ 2�
�

1

Zn
���

�2Zn
���

���̄h�2
, �C2�

where S���cos2 �. Now Eq. �C2� describes the full en-
semble without breaking symmetry, which is valid above
criticality. The terms inside the curly brackets can be explic-
itly written by using Eq. �13�. Solving this recursion relation
with the first term as

�
�

1

Z0
���

�2Z0
���

���̄h�2
= �

�

cos2 � = S ,

we obtain Eq. �14� as the susceptibility for the n-generation
tree.
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